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ABSTRACT

A characterization of the best L
1
-approximation to a continuous function

by classes of fixed-knot polynomial splines which satisfy generalized convexity

constraints is presented and uniqueness is shown. Included ii the possibility of

specifying the positivity, monotonicity, or convexity of the class. The proof of

uniqueness uses recently developed results for Herinite-Birkhoff interpolation by

splines.
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SIGNIFICANCE AND EXPLANATION

In practical applications of approximation theory , it often occur s that the

function being approximated is k nown to have some additiona l prope rties such as

positivity, s~ notonicity, and/or convexity. A best app roximation may not preserve

any of these , even though such prop erties may be very i~~oitant for the application.

In this case one should search only a~~ng approximations which satisfy the dssirsd

side condition s of positivity , monotonicity, or convexity. These are special

cases of generalized convexity constraints .

This pap er begins the study of best approximation in the mean or L
1-norm by

fixed—knot polynomial spline functio r ~ which satisfy generalized convexity con-

straints . As one particu lar exa,çle, it is shown that the best L1-approxiaation

to any continuous function by nonnegative , nonincreasin g cubic splines with fixed

knots exists and is unique .

The responsibility for the wording and views expressed in this descriptive sunvnary
lies with MRC, and not with the author of this report.
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BEST MEAN APPROXIMAT ION BY SP L INE S SATISFY I NG

GENE RALIZED CONVEXITY CONSTRAINTS

Denni s 0. Pence

Introduction

The concept of monotone approximation by polynomials was introduced by 0. Shisha 1121.

It has been studied by many authors including R. A. L.orentz 141 • who demonstrated unique-

ness for best approximation by monotone polynomials in the uniform and L 1-norm . J .  A.

~~ulier and G. D. Taylor 191 have generalized the concept to include more arbitrary r.-

strictions on the ranges of der iva t ives .  If the restrictions are al l  of n onneaa tiv l ty  or

nonpositivity. they are called generalized convexity constraints.

Classes of splines satisfying generalized convexity constraints were introduced and

studied in the author s thesis (6). Best uniform approximations were characterized and

partial uniqueness was established . This paper continues the study of such spl~nes by con-

sidering the L
1—norm . A characterization for best t.

1
—approximation by these classes of

splines is given and uniqueness is demonstrated. Previous papers considering best

approximation by splines include the work of M. P. Carroll and 0. Braess (21 . P. V. Galkin

(3 1. and A. Pinkus 181.

We use results f~r Hermite-Birkhoff interpolation by splines which were developed by

the author (61 . 171. For completeness the required results are given in the following

section .

1. Hermite—Birkhoff Interpolation ~~ Splines

Suppose —
~~ < a - ‘ F, 1 ~~~~~~~ ~q 

< 
~q+l 

S b < ~ and integers R
~ 

with

0 < R < m, V = 1,.. .,q, are given. Let — Sm( {F ,  }q• {i~ 1
q, denote the space of

p p V 1 V 1

polynomial spline functions of order in with fixed knots } q, each with multiplicity

q
R , respectively, where p — P . Thus g s is piecewise a polynomial of degree

V v—i 
p

at most m — 1 with g~~ discontinuous only at a knot F, where j > in - P .  We

adopt the convention that all elements of and all derivatives of elements of are

Sponsored by the United States Army under Contract No. DMG29-75-C-0024 and by the
National Science Foundation under Grant No. MCS75—17385 Aol.
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I

defined everywhere by assuming continuity from the rig ht. Notic. that dia s* . a • p.

We review needed facts about Mermit —Bzckhoff interpolation (H BX) by polynomial

splines.

Lst interpolation points

(1.1) X — (a < *1 < *2 < ‘
~~~

< X
k 

< b)

be given. A matrix

(1.2) E — {e~~ }. i — l ,...,k i j  — 0, i , . . .. a  — 1

i. called a spline incidence matrix for X and provided .
~~ 

- 0, * 1, or 2 and

ejj — - 1 or 2 only if x~ — for some p and j  > in - R .  The MB! problem def ined

by (E, X, 5 )  is:

Given any values (y~~ : a 1 or 2) and

(y~~ : e1~ — — l or 2 ) ,  f ind g c with

(1.3) g (i)  (x1
) — 

~~~~~ 

whenever e~~ — 1 or 2

(1.4) g~”(x1— ) — ~~~~ whenever 
~~~ 

— -l or 2

As in (61, (7) • when we display such a matrix E, we indicate the relationship be-

~~een the interpolation points 
x and the knots of the spline space by drawing the

following lines:

(i) If x~ < < we draw a solid line between the i—tb and (i + 1)—th

rows extending from the (in - R )-th column to the (a — 1)-th column. If

more than one knot lies between X
i 

and Xi#l~ 
then draw several lines. 

- .

(ii) If x~ — 
~~~

, we enclose in a box the entries in the i—th row from the

- R ) -th column to the (a - 1)-tb column.
‘I

Thus an entry of E may be -i or 2 only if it is boxed.

Def ine

(1.5)  IlsIt —

i:~

rn~~~~~- sa ,n,, ,L - p~ - . ‘a , . _t  I -. S ! .  • S’ ~~~ - - - A ~~~~~~~~~~~~~~~~~~~~ ___—~~- ———--- —



We say (E, X . ?) ~s full when lIED • dim a a • p. If (E. X . S )  ha. a unique

solution for any given data value s or. equivalently, if the only .olution to th. home-

geneous problem i. the zero spline . the prob lem I. called poised. Obviously (!. X .  3 )

must be ful l  for this to happ.n. When liEu c a • p. we say (~ , x, S )  is quasi-

poised if the dimension of the solution space for the homeq.n.ou. problem is exactly

a + p -  h Ell
We now define what are essentially submatrices of E. For a — 0. 1...... — 1

and 0 1 ‘ s ‘ q + 1. let k1 — mm ii : 
~~ 

x~ ) k2 — aax(i : x~ -~ . ..nd

(1. 6) E(n  : t ,  s) — (e . . ) ,  I — k 1,...k3 : — n a — 1

where

1, if i — k1, x~ — F,1. and ejj — 1 or 2

* 

e1., if x .  € (~ , F , )  or if i — k 2 , xi — 

~~~~
. and j < a —

( 1.7) e. —

1, if i — k 2 , x~ — F,5 . and e
li  

— — 1 or 2

0, otherwise .

By a simple dimension argument , it is easy to see that the following called the

local Polya conditions (LPC) for (E , X, are necessary for quasi-poisedness :

(1.8) I IE(n : f , s) < in — n + p(n : t,s)

for all ii — 0,1,...,m — 1 ; 0 < £ < s < q  + 1

where

( s-i
~ mintR • m — iii , if ~ + 1 < s

(1.9) p(n : t,s) a v 1+l V

, if I + 1 — S

It is also easily verified that all of the (LPC) are satisfied if we have that

(1.10) IIE (n : i,s) hI < in — n + p(n : 1,5)

for all {(n,t,s) : R < in — n, when £ < v < a)

— 3 —

‘S  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~ - —~~~~ —-a



r~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

—

In particular when (1, X. ?) is f u l l ,  the ( LPC) imply that

£
(1.11) (JEll  — J (E ( 0  i t . q . i ) f l  

~~. I . t •
v—i

LEMMA 1.1. If lIE(0 : &, s) Il — a + p (O s I s )  for !~~~ 0 ‘ t ‘ $ 
~ 
g + 1 2E.

O ‘ £ < s < q + 1, then CE ,  X , can be ~~~~~ vertically into two or three MM

ble, each defined 2! ! spu n. 
~~~~~ 

of orc~er still a but with fewer knots than

The “central one of the decomposed problems has incidence matrix E (0 * 1,.) .

LEMMA 1.2. If x —~~~ for some i and v. and e .1 tor ah j — 0 . l , . . . . m - P  — 1 ,— i V — —  — — i j  —— V
or !~~ 

- some v. (1. X. S )  can also be ~~~~~ vertically into two HBI

pro blems considering fewer knots. E(0 * 0,v) and 1(0 : v,q+l) will be the incidence

matrices for these two smaller problems.

We further note that the above decompositions preserv, the ( LPC) and that if the

original problem has a full matrix, then so do all of the smaller problems. Quasi-po i sed

ness of (B, X, ?) is equivalent to quasi—poisedness of all of th . split problems.

Simi lar decompositions have been noted by several authors, see (5) , for example. The cam-

plete details are tedious but not hard and can be found in 161 .

Let CE, X , S )  indicate a given RB! problem. If x~ j  R }~ . then we say t ’- at

we have a regular sequence beginning with e~ 1 
of order p when

e~ 1 
— ci j+l •~~~‘~~~~ ~~~~~~~ — 1 with e~ ,1_ 1 

— 0 and e
i j +~ 

— 0 if either is defined.

ttlso if x~ — 

~~
, then we say that we have a regular sequence beginning with e~ 1 

of

order p when c
ii 

— e
~~~ +1 

a
~~~~

•a ei , j+~~ i 1 with I + U ~~~~~ 
— 

~~~~
‘ ~~~~~~ — and

— 0 if either is defined . Further a regular sequence ~~~~~ . . ~~~~~~~~~ is called

strongly regular if e4 i~ defined , zero , and, in the case where
,i U

x~~~_ ç , i + p < m _ R ~~. A sequence is even if it has evefl order and~~~~~ 0therwise.

We say that a regular sequence e~ 1
.. .  . .ej ,1+~_ 1 ii su~~orted provided there exist

integers i1~ j1’ i2 . j 2 
with i1 i < i2 . ~~~~~ — 1 or 2 .

-4-
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I

(1.12) < minfj , ( m M  ; x~ 
. x l )

I . .  
V

(1.1 3) 
~2 

‘ m i n (j  • (s—R : X~ 
~ 

‘ 

~~~~ 
• 

___

1, if x~ I ( C } ~2

(1.14) e — 1, if  x — ~ and ~ c a— Pv 2 

~

,

— 1 or 2, if  x~ — 

~ 
and 

~2 
‘ m—R~ .

The problem (E, X , ?) is called weakly conservative (C) if eve ry supported strongly

regular sequence is even.

ThEOREM 1.1. Suppose CE, X, ?) satisfies th .~ (LPC) and (C) . Then it is quasi-poised.

This theorem generalizes the sufficiency theorem of Atkinson and Sha~.ma for KB! by

polynomials ( 1). The proo f can be found in (6 1 , ( 7 ) .

We shall need the following technical leemas. Al t  three lesatas concern at tempts to

add conditions of some Sort to a given HBI problem .

LEMMA 1.3. Suppose (E , X, ?) satisfies the ( LPC) but when some strongly regular

sequence in B a extended to have an additional one to the ~~~~~ giving the matrix E,

then the (LPC) are violated. There exists ~ I (~~~)~ .U X so that when F, is added as

a simple knot to the spline space, then CE , 1. S~~~1
({ F , )~~, F,; (R} ~ , 1)) satisfies the ( 1.PC).

Proof. Suppose e~ j 
. . — ci j l  — 1 is the strongly regular sequence of B and that

e~ 1 
is changed from a zero to a one to obtain ñ . Then 

~ 
, 0 < I < s < q + 1

with x~ € (F,1,F ,5
) so that for

(1.15) ll~(n : £ , s ) l I  lhE (n : 1.8 ) 11 1

— in — r~ + p (r~ £ ,.. i + 1

Without loss of generality assume that (1.15) cannot happen f i rs t  for any ~ ~ and

secondly with r~ for any 1 and ~ with LF,~ ,F ,~ J ~

-5-
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Let

(1.16) c — mm ( (x i
_ x

i..1
) , ( xj.1

_x
i) .(hx~

_
~~I * a

We choose F, € (xi 
- € .  X

i 
+ c) \ (X j

) in such a way that when ( i~ added to th. kno t

set, i.e. ( F , }~~~~ — ( F , )~~ U (~ ) properly ordered, ~ — q . R~ 
a 1, and I 1 ~ . .

we have

(1.17) ~I!(n £,t)fl ( Il~th £.s +l ) ll ~~~~

(1.18) J(~~Cn : t , s+l)~f ((i(n : 1.5+1>11

with respect to 
~~~~~~~~~~~~ 

;

It is easily seen that this can be done. The proof is completed by checking the

various way s B might violate the (LPC) with respect to the new spline spec.. If this

happens , then (B, X, ?) meat violate the (LPC ) , contrary to hypothesis.

A condition corresponding to e
~ ~ 

- 1 is called a Lagrange condition and we say

that we are adding a Lagrange condition at t to an RB! problem CE . X .  3 )  i f  a ze ro

in the j — 0 column is changed to a one, possibly by adding a new row to B if t I X.

LEMMA 1.4. Suppose (B , X, ?) satisfies the (LPC) but is not f u l l .  Then ther. exists

! point t I x U (F ,)~ so that a Lagrange condition can be added CE , X. S) witl*~

out violating the (LPC) .

Proof. If I I E ( 0  : t , s) 
~I 

m + p(0 : £, s) for some 0 < t ‘ 5 ~ a + 1 or

0 < £ < 5 c q + 1, then we can decompose according to Lemea 1.1 and consider one of the

split problems which is not ful l.  Thus without loss of generality we ass~~ this never

happens. But then any Lagrange condition can be added without violating the (LPC) .

LEMMA 1.5. Assume that CE, X, ?) satisfies the ( LPC) but is not f u l l .  Without lose

of generality, assume that ({~~ }~ U {b)J C X, possibly ~~ having some rows with all

zero entries in B. Then we can “fi l l” B ~~ !! ~E!i ! way that the (LPC) remain valid ~~

Ci) changing some “boxed” zeros to ones ,

(ii) changing some “boxed” ones to twos, ~~~~‘or

(iii)  changinq some zeros to ones in the last row corresponding to b.

-6-
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proof. Irutu ~~ ~vrL for & • 1 .  , q we make changes of type Ci ) or ( i i >  ~~-~; “bo xed ’S

entri.s corresponding ! the interI-~ tt’ion point and knot so t h a t  (1.11) will be valid

for that integer after ‘h.~ changes are aids. Further we make changes one at a ti for

entries with j-index ~~~ large as possibi. without violati ng the ([PC). ‘re show that th~~

always possit le , suppose we have done this for I — 1,2 i~~-1 (if  any) and have

I
( 1 .19)  ‘J E l l  — IIE (O * t ,q+i)IJ > R • t — 1,2 t~ — 1

V.’

Suppose x — F,
1 

. I f
S S

(1.20) lI~ll — 1 1 E(0 ;.,~.i lI >

then P r - r -  is no need to make any changes in t h .  1 5-th row . If e 1 .  — -1 or 2 for all

j  a m - P in - 1 , then (1.20) holds. Suppose

(1.21) • — 0 or 1 where in —

(1.22) e. — — l or 2 for all j  — (in — P ) , . .. ,j . — 1 (if any)1
~ 1 . 5

but  e . cannot be changed to —1 or 2, respectively , without violating the (L.PC). By

(1.10), there exist integers f%, I, and s with Z < -~~ < ;, Ti < j~ , R~, ~ in — fl for all

l < ’ ~~ (if any), and

( 1 .2 3) ll E C~ 2 , s) ~I — — fl + p (f l  t~ g)

Then

( 1 .24) IlElt — I I E ( 0  : t5 ,q+1) lt

( II~ II — I I E C O  : ~,q+l) II) + t (EC ~ : L,s) II

J’ Il~ Cn t~ .s) 
~J . if 1~ ~~.

— + max (0, fl - fl* + R~
(~ max ( O , m_ R~~ _ fl1 . if £~ — i )

—7—
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u 1  V

Again (1.20) holds. Thus we can always accomplish the induction step.

If the matrix is sti l l  not full after all of these changes, then we make changes of

type (iii) at entries with j—index as large as possible without violating the (LPC). w-

argue in a similar manner that if i t  is not possible to change some such entry, then it  is

unnecessary to do so.

Example 1.1. 0 0 0

f o  0 1 0 2 i 1 \
E f  0 0 lo 0 o l J

i 0 o i o J
\~o o o o oj

becomes via the procedure given for Lemea 1.5

0 0 0

1 0  0 1-1 2 21\
O o F i  0 o l )
1 0 0  1 o J

1 1 0

The display E is quasipoised and E is poised by Theorem 1.1.

2. Best L
1
—approximation by Splines with Generalized Convexity Constraints

Let integers 0 < k 0 < k 1 
< <k

w 
< in — 1 and — 1 , V — 0,l....,w be giv,n.

Suppose S c  C(a, b J ,  i . e .  P < in, V — l,...,q and i n ’  1.

Define

(k
(2 .1) G — € S~ : c * 

v (t) > 0

a < t < b , v — 0 , l , . . . , w}

~~call we assume right continuity of all spline derivatives. Also for every g C G we

have

(k
(2.2) g V 

~~~~ > 0 if k > in — .

—8 —
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4
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b
For an integrable function h, let ihH 1 — f 

~~~~~~~ dt . Suppose f is in

C(a,b), t h ~ space or continuous funct ions  defined on (a ,b J ,  but is not in G. Then a

best L
1-approximation to f from C is a spline g5 r C such that

C 2 . 3 )  J J g . — f 111 — inf h g  — fit1g~ G

Denote by 
~~~~ 

the collection of all such L -t  approximat ions .  
~~~~~~~~~ 

a • because C

is closed, convex, and finite-ths*ensional. We have the following characterization theorem.

ThEOREM 2.1. ASsuine f C C (a , bJ and G is defined as in C2.1). Then there exist

Ci) functions 
~~~~~~~~~~~~~~~ 

, r > 1 where t~~. Ct) t — 1 for alnost

t C (a ,b) , i — 1 r

( i i )  an UBI problem CE, X, s ) ,  1I E H + r < in + p 1 wh ere e . a 0 ~~~~ if

j — k  for some v ,
V — —

(iii) positive scalar s A
1,.. 

~~~~ ~~~
( iv )  scalars e . .  • 1 or 2) , e . .  • — l or 2) where

sgn = - agn whenever j — k

with

(2.4) 
Ji 

A .f ~~~~( t ) *( t ) dt  + ~{p ..~~~
> (x.) : e~. - 1 or 2)

+ ~{u . .  ~~~~~~~~~~~~~~~ : e.. — —l or 2} — ~

for a l l  q~ ~—
~~~~~~~~ 

p

such that g € G is !~i ~~~~~~~~~ ~~~ ~~~~

b
(2.5) 

~a ~ . (t )  t g (t )  — f(tfldt — Ii ~ — f it 1 ’ ~ = 1 r

(2.6) g~~
’(x .) — 0, whenever ej j  — 1 or 2, ~~~

(2 .7 )  g~~~(x~— )  — 0, whenever ejj — -1 or 2

— 9—
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Proof. This theorem is a specific case of a theorem of ~~zema and Smith (10, Theorem 4.1)

once we note that it is easy to find a polynomial $ c S~ satisfy ing

(k)
(2.8) * 

V Ct ) ‘ 0 a < t < b; v — 0,1 w .

LEMMA 2.1. If f c Cta,b), 
~l 

and g
2 

are elements of 
~G~

1
~
’ and g0 - 2

(g
1 

+ g
2

) .

~~!!i g
~~ 

- g2 vanishes at the zeros of g0 
- 1.

This leninta can be found in (2) and is a special case of (10, Lemea 6.1).

ThEOREM 2.2. For ~~~~ f € C(a ,b J , there is a unique best L1-approximation from C

defined as in (2.1).

Proof. Let 
~‘l~~~~~

Wr ~
‘l’”~~~

1r’ 
(B, x. ?), and (u~~~ } be as guaranteed by

Theorem 2.1. Without loss of generality we may assume CE , X, ?) is quasi-poised since

any dependency in these conditions could be used to accomplish (2.4), (2.6), and (2 .7 )

with a smaller HBI problem made up of independent conditions.

Suppose g1 
and g2 

are both in Then g0 
— ~ Cg1 

+ g
2

) is also in

since it is convex. Applying (2.5) to g0
, we see that almost everywhere that

g0 (t)  x f Ct) we have

(2.9) ~ .(t) = sgn(g0
(t} — f ( t )J ,  i a l,...,r .

Let • be the right continuous function defined by

(2.10) •(t) — lirn sgn(g0
(t+c ) — f(t+e ) )

Define

(2.11) ‘2 = closure {t e (a,bl •(t) — 0 or • changes sign at t)

Thus g0
(t) = f(t), for every t C ‘2 (an possibly at other isolated points where g0 

— f

doesn ’t change sign) .

Suppose g € 
~~~~ ~f 

~~~ 1, then j — k~, for some v and g~~~(x) • 0.

By the definit ion of C in (2.1) , g
o )  does not change sign . Using the zero counting

procedure for splines devised by Schuinaker [111 (see also (61 , (7)), this means that x
i

is in some interval tpossibly degenerate) where g(i) is identically zero and that this

- 10—
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interval is either an ev. r~ for or it contains one of (a) or (b). w con-

clude that if a ~ x c b, e m — 1 , e. — 1, and e. - is not “boxed”, than
1 1) 1,3+1

(2 .1.fl g C 3 +l) (~~~) — 0

One by one , we add enough of the zero conditions designated in (2.12) to the HBI j .ro-

blem (E, X, ~~hhl
) to assure that it has no odd strongly regular sequences in rows for

which a < x < b and , i f  the sequence beqins with e
1 0’ for which x1 / ‘2. We add con-

ditions from (2.12) to (F., X, ~
“) . if necessary, to assure that it has no even strongly

regular sequences beginning with e . 0 if x . T0 (a,b). If it is necessary at each ste;

in order to preserve the (LPC), a simple knot is added to the spline space as described in

Lemma 1.3. Then we define scalars ii . . ,  possibly zero and having no particular sign, so

that (2.4) remains valid , even for the enlarged spline space. The fact that such constants

u . .  can always be chosen follows from elementary linear algebra and Theorem 1.1. Thus we

obtain CE, X, Se), {~~. . } ,  and {u.. -} satisfying the CLPC) of the desired form with

(2.13) 
i~1 

A if~~i
Ct)*(t)dt + 

~~{ C
1~~ *~~

1 (xi
) : - 1 or 2)

+ ~~~~~ ~~~ (xi ) : • —1 or 2) • 0

for all 4, S

and for any g & £G
(f) C C S (in particular for and g

2)

(2.14) g~~~(x.) — 0, whenever — 1 or 2, and

(2.15) g
(J) (x~~) — 0, whenever a —l or 2

Choose a maximal subset t1
,. . . ,t from T \ (xi : = 1) SO that when Lagrange

conditions at t1
,...,t are added to (E, x, 5’!~) to obtain CE1

, X1
, Se), the CLPC)

are still satisfied. Note that (B1, X~ , S~) satisfies (C) so by Theorem 1.1 it is

quasi-poised.

Claim l~ il E 1 li — in +

— 1 1—

- - . -. ~~~~~~~~~~~~~~~ -~~~~~~~~~~~~~ - -~~- ~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~ - ~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~ 
- - - - - .1 ~~~~~~~



--

If not, then by Lemea 1.4 there exists a point t~ ~ 
U ~~~~ so that a Lagrange

condition at t~ can be added to get (B 2 . X2 , 3~ ) .  t~ / T or else it would have beer .

added in before using the maximality of the chosen t
1 

t .

We obtain a full (I, X, S~) by applying Lemea 1.5 to (B2. X2
, Se), if necessa ry.

The only Lagrange condition that might possibly be added in this step is one at b. Not ’-

that this full HBI problem will still satisfy (C) as well as the (LPC) so by Theorem 1.1

it is poised. There exists a unique q,
~ 

€ with

$~~~
(t

5) 
— •(t5) a 0

(2.17) ~~~~ 
(~~) a 0, whenever 

~
. • 1 or 2 and a

~~~~~~~~~~~~~~~~~~ 

a 0, whenever — — 1  or 2

First *+(t) a 0 for all t € ‘2. If t € T \ {t1 t5), then t ~

where equality occurred in the (LPC) indexed by (0, t, s) for CE1
, X

1
, S). hence in

(~ , X, S’!’) and t,, d ~~~~~~ (1, L .9~) can be decomposed according to L.emea 1.1 and

the split problem involving t will have all zero data values from (2.17) . Thus 4’~ is

identically zero on

If )IE (0 : £,s) lI = in + ~ C0 L, s) for some 0 < ?. < s < q + 1 where t~ /

then the problem decomposes according to Lelmna 1.1 again. Examining the part of (2.17)

that each split problem must satisfy, we conclude that *5(t) = 0 for all t e [a,C J if

< t,~, or 4’~ (t) = 0 for all t € if t,, < ~~~~ .

If = a t,~, and • 1 for all j a 0,1g .  ..,m — k
~~ 

— 1, then (1. ,c, S~)

can be decomposed according to Lenses 1.2. As above the split problem not involving t,,

will be homogeneous so ** 
is identically zero either to the right or the left of x~.

Suppose 4i5(t) = 0 for all t .~~ for some 0 < < a < q + 1, hence
0 ~O 

0

t,~ / Let C E ,  1. s )  denote Ci, 1, ?) with the Lagrange condition at t~

—12—



deleted. Let t
0 be any point in (F ~ ,F~ ) \ A.  A Lagrange condition at t

0 cannot be

added to (B’, ~, ?) without violating (INC) . It it could be, it ~~uld give a full

poised HBI problem for which the nontrivial 
~, 

satisfies all zero data values which is

impossible. Thus there exist integers 0 c ~ < s C q + 1 with < t0 ~•
, t , ‘

and II E (o : t,e) ll — m  + ~(0 : L,s), hence 111(0 : t,s) hl • m + ë(0 : L,s ) . As before

either *,Ct) — 0 for all t e (a,~ I if 
~ 

< t, or *,(t) — 0 for all t € (~~ ,b)
0 0 0

if <

0

We conclude that iji , is identically zero except on some knot interval

containing t, (possibly (a ,b J ) .  On this interval there are only a finite n~~~er of

points from ‘2 and only a finite number of points where is zero. Any sequence be-

ginning with e.0 for which < x~ < 

~ 
and x

~ 
a t~, is strongly regular .

Further

(2.18) I I E (0 : t, s) 
~ 

in + ~(O : t,s) if 0 < t < s < q + 1

and 
~~~~~~~~ 

~

Claim 2: sgn 4’~
(t) = 4(t) , for a.e. t €

Suppose 4’, changes sign at some t
0 € ~~~~~~~ \ (‘2 U {t,)J where 4 does not

change sign. If t — ~~ for some i and ~ • 1, then ~. begins a strongly0 i,O 1,0

regular even sequence 
~~~~ ~~~~~ ~~~~~ 1 and since t must be an odd zero for

*,. ~~~~ (t0) = 0. Define CE
0
, X

0
, S~) to be CE’, ~, S~) with 

~
. changed from

zero to one. Otherwise add a Lagrange condition at t
0 

to (B , x, S~) to obtain

(E
0
, X

0
, S’~). Either way CE 0, X0 S~) is full and by (2.18) must satisfy the CLPC). By

construction (C) is satisfied so by Theorem 1.1 this is a poised problem. This is impossible

since the nontrivial 4’, satisfies the homogeneous problem. Similarly there cannot exist a

point t
0 € 

~~~~~~~ ~ 
T where $ changes sign but 4’, does not. Thus Claim 2 is

established.

Then
b b

( 2.19) 1a~ i 0t ) *0t t 1a I 4 ’* R~~~~ ~ 0 , i = 1 r .

—13—
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This together with (2.17) gives a spline 4’, which contradicts (2.13) Thus Claim 1 is

established.

using LeIrina 2.1, ( 2 . 1 4) ,  and (2 .15 )  we have that g
1 

— g2 satisfies the homogeneous

poised problem problem (B
1
, X1, ?) and q

1 
- g

2 
c S C ?. Thus g1 

a g2. Since

and g2 were arbitrary elements of 
~G

0
~~

’ the proof of the theorem is complete.

3. P5niotonicity and Convexity

Definition (2.1) for G in the previous section is a natural generalization to splines

of the notion of monotone polynomials introduced by 0. Shisha (12) (see also (4)). Included

is the possibi lity for requiring nonnegativity or nonpositivity by choosing k
0 

• 0. since

we made the assumption that all of the elements of our spline space were continuous,

choosing some a 1 requires the usual moriotonicities, either nondecreasing or non—

increasing.

If R < in — 1, v — 1,... ,q, then some k — 2 implies that all of the elements of

O are either convex or concave . However it is reasonable to ask for convexity c -  concavity

even if some of the knots have multiplicity in - 1. Convexity is well defined (although not

in terms of the second derivative) for linear splines, i.e. continuous piecewise linear

functions, for example. Similarly nonotonicity is well defined for discontinuous splines.

We briefly indicate how the preceding section would need to be modified to include

the requirement of convexity when B = in — 1 for some of v = l ,...,q. We ask that

(3.1) ~(2) Ct) > 0 , a < t < b, and

(3.2) ~(i)(~~~) — 4~
(1)
(~~_) > 0  whenever A = in — 1

The conditions in (3.2) are also linear constraints on ?. it is not difficult to show

that there exists a spline in which satisfies all of the constraints including these

strictly so that the theorem of Rozema and Smith (10, Theorem 4.1) applies.

If none of the constraints of type (3.2) are chosen by the theorem of Rozema and

Smith , then we proceed exactly as in the previous section. On the other hand if one of

these “jump” constraints is active and is chosen, that implies that for g s

-14-

, ~~ - . S ~ ~~~~~ .-~~_ - _ ~~~~~~~~~~~~~~~~~~~~~ -~~~~~ ~ -.- ‘~~ ~~ ~~~~~~~~~ - - - - - ._ -~~ - — -~~



(3.3) gW (~~+) a

i.e. the knot . is really only of multiplicity m - 2 for all splines ~~ P0
(f,. It is

easy to show that P (f) C P (f) where is with the knots chosen in (3.3)0 p p
p .

having multiplicity only m — 2 so that p < p. In fact the above inclusion is an equality

and P (f) can be c”aracterized using the arguments of the previous section. In psrti-

p

cular we can still conclude that uniqueness holds.

4. Further Extensions

With only minor modifications the work of this paper can be extended to the problem

of finding a best global L1—approximation to a compact (in L
1
(a,b1) set of continuous

function F from G as defined in (2.1). Such best global approximations are also called

restricted Chebyshev centers for F with respect to C or best approximations to the

elements of F simultaneously. The methods of the paper by Rozema and Smith (101 apply in

a straight-forward manner.

The techniques we have used can also be applied to the more general problem of best

L1
-approximation by splines with restricted ranges of their derivatives. In the uniform

norm, the corresponding polynomial problem was introduced by Roulier and Taylor [91 and

the spline problem was studied in [6]. We wish to point out the significant differences

between uniform and L1
-approximation by these restricted splines.

Examining the proofs in 191 and C6], only the functions which bound the ranges of

the derivatives (other than the zero derivative) need to be assumed to be differentiable

in order to guarantee uniqueness in the uniform norm. In L
1
, the functions which bound

the range need to be differentiable as well in order to carry out the analog of Claim 2 in

the proof of Theorem 2.1. The problem of one—sided L1
—approximation of a differentiable

function by splines which was studied by A. pinkus (8) is a special case where the given

function is also the range bound.

If there are bounds on the range, then for uniqueness in the uniform norm to be

assured , the assumption is needed that the given function satisfies these range bounds at

—15—
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least within some t > 0, where C is strictly less than the distance from the given

function to the set of restricted splines. If this is not the case , then a single linear

*
functional (a point evaluation) in C (a,b] may be a positive error-extrema l and a

negative constraint—extremal or vice versa in the terminology of (6). No such assumption

is needed in L1 
although the assumption that the given function is continuous is needed .
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